Research
My research interests include machine learning, signal processing and information theory, specially in application to radar and wireless communication.
Ever since I started my PhD, I have been lucky enough to join forces with some leading companies in the technology and telecommunication sectors, such as Ericsson or Bosch, in order to carry out my research. From 2018 to 2021, I collaborated closely with Infineon Technologies AG around their radar sensors for IoT, adopted by companies like Google for touchless human-machine interaction.
Projects
As a research associate at the Fraunhofer Heinrich Hertz Institute (HHI), I am involved in several public and private research projects, including the following ones:
- 6G-ICAS4Mobility — Integrated Communication and Sensing for 6G Mobility.
- 6G-RIC — Germany-wide Research and Innovation Cluster for 6G Mobile Technologies.
- KOMSENS-6G — Perceptive 6G Communication Networks with Integrated Sensor Technology.
- AI4Mobile — AI-aided Wireless Systems for Mobility in Industry and Traffic.
Videos
In collaboration with HHI mm-Wave research group under the 6G-RIC project. The demo has been or will be showcased live at IEEE MILCOM 2024, Berlin 6G Conference 2024, EuCNC & 6G Summit 2024, and IEEE 6G Summit Dresden 2024 (Best demo award).
Talk on behalf of Prof. Slawomir Stanczak for the workshop Integrated Sensing and Communications: Information theory, signal processing, and applications, organized by TU Berlin and sponsored by Huawei.
Part of 2023 AI/ML in 5G Challenge, an initiative by ITU AI for Good. Watch the challenge finale here.
Joint work with Ericsson, presented at EUSIPCO 2022 in Belgrade.
Publications
- S. Wittig, R. Hernangómez, K. Vardanyan, R. Askar, A. Haj-Omar, M. Peter, and S. Stańczak, “Demonstration of a Real-Time Testbed for D-Band Integrated Sensing and Communication,” to be demonstrated at IEEE MILCOM 2024, Washington, DC, USA, Oct. 2024. Preprint available: at [arXiv/2407.04728].
- R. Hernangómez, J. Fink, R. L. G. Cavalcante, Z. Utkovski, and S. Stańczak, “Optimized Detection with Analog Beamforming for Monostatic Integrated Sensing and Communication,” in ICC 2024 - IEEE International Conference on Communications, Denver, CO, Jun. 2024, pp. 317–323. doi: 10.1109/ICC51166.2024.10622845.
- R. Hernangómez, A. Palaios, C. Watermann, D. Schäufele, P. Geuer, R. Ismayilov, M. Parvini, A. Krause, M. Kasparick, T. Neugebauer, O. D. Ramos-Cantor, H. Tchouankem, J. L. Calvo, B. Chen, G. Fettweis, and S. Stańczak, “Toward an AI-Enabled Connected Industry: AGV Communication and Sensor Measurement Datasets,” IEEE Communications Magazine, vol. 62, no. 4, pp. 90–95, Apr. 2024, doi: 10.1109/MCOM.001.2300494.
- P. Rosemann, S. Partani, M. Miranda, J. Mahn, M. Karrenbauer, W. Meli, R. Hernangomez, M. Lubke, J. Kochems, S. Kopsell, A. Aziz-Koch, R. Askar, J. Beuster, O. Blume, N. Franchi, R. Thoma, S. Stanczak, and H. D. Schotten, “Enabling Mobility-Oriented JCAS in 6G Networks: An Architecture Proposal,” presented at the 2024 IEEE 4th International Symposium on Joint Communications & Sensing (JC&S), Leuven, Belgium, Mar. 2024. Preprint available: arXiv.2311.11623.
- R. Hernangómez, P. Geuer, A. Palaios, D. Schäufele, C. Watermann, K. Taleb-Bouhemadi, M. Parvini, A. Krause, S. Partani, C. Vielhaus, M. Kasparick, D. F. Külzer, F. Burmeister, F. H. P. Fitzek, H. D. Schotten, G. Fettweis, and S. Stańczak, “Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio Access Technologies,” in 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy, Jun. 2023, pp. 1–5. doi: 10.1109/VTC2023-Spring57618.2023.10200750.
- S. K. Dehkordi, J. C. Hauffen, P. Jung, R. Hernangomez, G. Caire, and S. Stanczak, “Multi-Scatter-Point Target Estimation for Sensing-Assisted OTFS Automotive Communication,” in WSA & SCC 2023; 26th International ITG Workshop on Smart Antennas and 13th Conference on Systems, Communications, and Coding, Braunschweig, Germany, Feb. 2023, pp. 1–6. ISBN 978-3-8007-6050-3.
- A. Palaios, C. L. Vielhaus, D. F. Külzer, C. Watermann, R. Hernangómez, S. Partani, P. Geuer, A. Krause, R. Sattiraju, M. Kasparick, G. Fettweis, F. H. P. Fitzek, H. D. Schotten, and S. Stańczak, “Machine Learning for QoS Prediction in Vehicular Communication: Challenges and Solution Approaches,” IEEE Access, vol. 11, pp. 92459-92477, 2023, doi: 10.1109/ACCESS.2023.3303528.
- R. Hernangómez, A. Palaios, G. Guruvayoorappan, M. Kasparick, N. U. Ain, and S. Stańczak, “Online QoS estimation for vehicular radio environments,” in 2022 30th European Signal Processing Conference (EUSIPCO), Belgrade, Serbia, Aug. 2022, pp. 1701–1705. doi: 10.23919/EUSIPCO55093.2022.9909612.
- R. Hernangómez, I. Bjelaković, L. Servadei, and S. Stańczak, “Unsupervised Domain Adaptation across FMCW Radar Configurations Using Margin Disparity Discrepancy,” in 2022 30th European Signal Processing Conference (EUSIPCO), Belgrade, Serbia, Aug. 2022, pp. 1566–1570. doi: 10.23919/EUSIPCO55093.2022.9909618.
- R. Hernangómez, T. Visentin, L. Servadei, H. Khodabakhshandeh, and S. Stańczak, “Improving Radar Human Activity Classification Using Synthetic Data with Image Transformation,” Sensors, vol. 22, no. 4, Art. no. 4, Jan. 2022, doi: 10.3390/s22041519.
- A. Palaios, P. Geuer, J. Fink, D. F. Külzer, F. Göttsch, M. Kasparick, D. Schäufele, R. Hernangómez, S. Partani, R. Sattiraju, A. Kumar, F. Burmeister, A. Weinand, C. L. Vielhaus, F. H. P. Fitzek, G. P. Fettweis, H. D. Schotten, and S. Stanczak, “Network under Control: Multi-Vehicle E2E Measurements for AI-based QoS Prediction,” in 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, Sep. 2021, pp. 1432–1438. doi: 10.1109/PIMRC50174.2021.9569490.
- H. Khodabakhshandeh, T. Visentin, R. Hernangómez, and M. Pütz, “Domain Adaptation Across Configurations of FMCW Radar for Deep Learning Based Human Activity Classification,” in 2021 21st International Radar Symposium (IRS), Berlin, Germany, Jun. 2021, pp. 1–10. doi: 10.23919/IRS51887.2021.9466179.
- R. Hernangómez, A. Santra, and S. Stańczak, “A Study on Feature Processing Schemes for Deep-Learning-Based Human Activity Classification Using Frequency-Modulated Continuous-Wave Radar,” IET Radar, Sonar & Navigation, Jun. 2020, doi: 10.1049/iet-rsn.2020.0131.
- R. Hernangómez, A. Santra, and S. Stańczak, “Human Activity Classification with Frequency Modulated Continuous Wave Radar Using Deep Convolutional Neural Networks,” in 2019 International Radar Conference (RADAR), Sep. 2019, pp. 1–6, doi: 10.1109/RADAR41533.2019.171243.